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e Why it works?
e How it works?
e When it works?



Let NATURE do
the work

t works? (Part 1/2)



Statistical Mechanics +
Machine Learning = QML?



. e Have a system of particles, can either be in
Brlef Stat MeCh spin-up (Energy = E) and spin-down (Energy = 0)
states
Intro e Place the particles in an environment with

thermal energy U0 and temperature T
e Find the average energy of the system




Derivation (Kittel, Thermodynamics)

e Using function g (gives the number of arrangement to achieve a certain energy) and entropy (¢ = In(g))
— Find the probability ratio of finding a state with energy E versus 0

P _ gtUs ~ &) _ explofUs — 0]
PIO) g(Ug) exp{e(Uq)]

e Taylor expand o because E is small w.r.t. U

iU — £) > a(Up) — elcaicUy) = 6(Ug) — ¢/t
e Simplify the probability ratio

P() P(0) = expl~&/q).
e Find the expectation value of the energy

(e} = Y L) = 0-P(0) + eP(e) =

gexp( —&/fr)
1 + exp(**a;‘f}




e e Given input x, want to output a result y that
Brlef ML Intro matches the truth values
_ e Approach
(1 ]'ayer NN o Initialize (pseudo)random vector

L3 o o o o  Compute an output y-pred (or 0i) by - x
C].aSS].f].er/LO g].St].C o  If more than one layers, then repeat the

computation above with non-linear function in

Regression) petweer
o Compute a loss using the Cross Entropy Function
o Ln O +(1-9) Wn(1-0;)
L nbul daden Ly( ]
Initial ; o Update g by using Gradient Descent
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Incremental

Bi < Bi-1 — o - VL(Bi-1)

o Stop when L is minimized (or g no longer
changing)
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Derivation (Malik, CS 189)
Assume many input samples — x is Gaussian So shadld W‘ng(;o Y=t ke x LB
Output two probabilities P(y=+1|x) and P(y=-1|x), decide y based on them — Arx)O
Want to distinguish P(y=+1|x) and P(y=-1|x) = 1 - P(y=+1|x) as much as possible
— maximize P(y=+1|x)/(1 - P(y=+1]x)) © max In{P(y=+1[x)/(1 - P(y=+1|x))}
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Derivation (Malik, CS 189)

e Redenote P for simplicity

P<\f/ | !X) 1 i+ﬂ74P( px) P (Y= 7()_’ P

e Calculate the case for general P(y|x) and total probability for n samples

P(le)— /\A(x) ’}“(r))l—
P Yy ha [ %10 x,,,@) ﬂ (15)

e Maximize the Iog of probablllty for S|mpler calculation
L{61D) = = yibnpse + (1=3:) bn (i)
L s
e Flip the sign and turn max into min

L2 ’(/Y\ZV\IMIA (fj,L*“O + . L)}




Comparison

e o -0c)

inpul dodan

L(01D) = = yi tnpe + (1-3:) b (1)

eexp(—gft}

| | l+exp(-s,’r_)- P \f:l x) - 4
U= (&) B et e

1-U/e =
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Energy in
Quantum?

H|¥) = E|¥)

Minimal Energy?
= Ground State!

= How to get there?
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Variational Algorithm
& Quantum Annealing

How it works? (Part 1/2)



e Trainable parameters are the rotation
degrees in the gates

e Hyperparameters include the circuit depth,
rotation axis and entanglement scheme

e Often use a classical device to tune and

O PyTorch optimize the parameters

e Can be viewed as a layer in NN
@ Qiskit
Pytorch Optimisation

(Computes gradient of Output > compute loss > optimise/update parameters :
O PyTorch

Variational
Algorithm

Classical node
(E.g. Pytorch
neural network)

Quantum node
(Qiskit circuit with
trainable parameters;
VQE, QAOA etc.)

loss function w.r.t.
paremeters) (a) [ variational parameters
{x, y} ¥,8) = (n,---, Yoy Biy- - - s ,"‘3,,) {)ﬁ
= ¥ @ measure

A
I “ s |+) I, 3
10) ~ Unl®)  UO) - AF 1 (2) © —-=§7E§‘-_’-
i +) g I=RE
- : &t
A T _-= 5




Quantum Annealing

High Energy (a)

Superposition
state

M <
Low Energy «v

Energy

Applied
magnetic
field

Device-dependent and task-specific
Sometimes compared with Photonics
Circuits

Does not use gates

Use magnetic spins as qubits and use fields
to let them evolve in time and maintain in the
ground state (adiabatic process)

Classical path

Solution Solution
Adiabatic evolution
n 1 Higher
probability
A of lower state
Te b
\
¥ AN
|
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Other methOdS Single-shot solution to linear system — HHL

Algorithm

Quantum Boltzmann Machine — Two layer
NN but uses adiabatic/annealing processes
to minimize the energy/loss




Everything can
be LINEAR
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Neural Networks rely on
Nonlinearities?



Can you use a linear model?

Linear Quadratic Cubic
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Can you use a linear model?

w? [x, %2, %7]

7 =wTx 9 =wT[x,x?] y

Linear Quadratic Cubic

X

If x = [x4, x,], then for quadratic features, we get [xq, x5, xZ, x5, XX, ], etc.

19



SVM & PCA

How it works? (Part 2/2)
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Quantum Support Vector Machine (SVM)

e Simplest supervised machine learning algorithms:

e Linear SVMs
e Perceptrons

e Quantum SVM — canonical example for QML techniques

1. Data input (qQRAM or other subroutine)
2. Process data with Quantum Phase Estimation and Matrix
Inversion

e Operations to construct hyperplane take log N
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Quantum Principal Component Analysis

e Principal Component Analysis used to compress our data's

representation

e Simplest form — diagonalizing the covariance matrix:
€ = Z ekckc,t
k

e Performing qPCA on classical data:

e Use qRAM (quantum Random Access Memory) - classical data

vector gets mapped to quantum state (v; — |v;))
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Before we continue... What is gqRAM?

e We know Random-Access Memory (RAM) uses " n bits to
randomly address N = 2" distinct memory cells” [GLMOg]

e quantum Random-Access Memory (qRAM) theoretically uses
" n qubits to address any quantum superposition of N memory
cells” [GLMO8]

e Large qubit-overhead = Not feasible in near-term
e Costly memory call
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Quantum Principal Component Analysis (Cont.)

Suppose vectors live in d-dimensional space so that
d=2"=N

Principal components:

v = E Vi Ck
k

o Classical time complexity — O(d?)
e Quantum time complexity — O[(log N)?]
e Quantum state has log d qubits
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How much faster M

anyways?

reinforcement
learning3°

Speedup Amplitude HHL Adiabatic gRAM
amplification

Bayesian OWN)  Yes Yes No No
inference!06.107
Online OWN)  Yes No No Optional
perceptron!0®
Least-squares O(logN)* Yes Yes No Yes
fitting®
Classical O(WN)  Yes/No Optional/ No/Yes Optional
Boltzmann No
machine®®
Quantum O(logN)* Optional/No No No/Yes No
Boltzmann
machine?261
Quantum O(logN)* No Yes No Optional
PCA!!
Quantum O(logN)* No Yes No Yes
support vector
machine!?
Quantum OWN) Yes No No No

method>!.

*There exist important caveats that can limit the applicability of the




When it works?

Well, obviously, when you have a usable quantum computer...
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Applications

Medical Diagnoses
Logistical Optimizations
Image Processing
Speech Recognition
Audio/Video Generation
Recommender Systems
Computational Sciences
Controlling Hardwares
o [Google Quantum Advantage] Learning from Experiments
Etc...
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Potential Areas to Explore

Unsupervised Learning — Clustering algorithms

Interpolation Regime — Generalizing well with random labelings?
Adversarial Attacks — Robust against noise/wrong labels?
Converging time — How many samples are needed to train?
Performance on various devices — Can device impact performance?
Representational Learning — More concise hidden representations
Denoising models — Can model find the most important parts of data?
Regression Models — Not a label, but a continuous number

Link vs global classification — One task better than another?

Deep learning — NLP/CV?

Encoding Schemes — Best way to represent data?

Etc...
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TODO

e Fill out the Survey Form

e Reminder: written project proposal with literature reviews and
methods is required for re-joining the program next semester
(likely 2 decal/course units)

e Thought Experiment: How many qubits do you need to
represent a 32-bit floating point number (assume between 0
and 1)?
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